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Abstract--The capillary instability of compound jets has been studied using a linear model derived from 
the two-dimensional equations of motion. The flow was considered as a superposition of steady-state plug 
flow and travelling waves of small amplitude. The eigenvalue problem, obtained via the disturbance-phase 
velocity, was solved numerically and the analysis applied to compound jets of liquids with different surface 
tensions, densities and viscosities. The influence of the outer secondary-fluid layer on the compound jet 
instability was analysed. Three different break-up regimes were established and the distance to the first 
break-up point was predicted. The necessary qualitative conditions for manifesting a specific break-up 
regime were identified, and the numerical results compared, whenever possible, with the experimental data 
available. 

1. I N T R O D U C T I O N  

The new ink-jet printing method, the compound jet, was developed at the Lund Institute of 
Technology, Sweden (Hermanrud & Hertz 1979; Hermanrud 1981). The compound jet is generated 
by a single jet emerging from a nozzle below the surface of  another stationary fluid. After breaking 
the surface the jet consists of  a cylindrical core (primary jet) surrounded by a co-axial layer of  the 
secondary fluid. The compound jet generation principles and a qualitative description of the 
hydrodynamics of the jet have been given by Hertz & Hermanrud (1983)• Radev & Gospodinov 
(1986) studied numerically the steady compound jet flow in a boundary-layer approximation: as 
they pointed out, shortly after emerging into the air, the compound jet attains uniform velocity 
and constant radii. 

Three different types of  compound jet instability were observed by Hertz & Hermanrud (1983): 
capillary, sinuous and varicose instability• The first theoretical investigations of compound jet 
instability were performed using a linear analysis of  the one-dimensional equations of motion for 
both phases--assumed inviscid [capillary instability, Sanz & Meseguer (1985) and Radev & 
Shkadov (1985); sinuous instability, Radev (1986)]. Shutov (1985), studying capillary instability, 
obtained asymptotic solutions for inviscid and heavy-viscous compound liquid columns in the case 
of thin secondary-fluid layer. 

The purpose of this paper is to study capillary instability including viscosity in the problem by 
means of a model derived from the two-dimensional equations of motion. The analysis of  
compound jet instability in this more general case requires extensive use of  numerical methods. An 
efficient initial-value technique is applied to solve the problem• The influence of  the secondary-fluid 
layer on the instability is analysed numerically. Depending on the physical properties of  both 
compound jet phases, the jet radii and velocity, three different break-up regimes are possible• The 
necessary qualitative conditions for existence of  the various break-up regimes are established by 
means of a variety of  numerical experiments• 

2. G E N E R A L  E Q U A T I O N  OF THE MODEL 

The instability of  a compound liquid jet of  constant radii Rj and uniform velocity U is considered 
(see figure 1). Hereafter the subscript j = 1 is set for the primary jet (inner fluid), whereas j = 2 
denotes the secondary-fluid layer (outer fluid); anywhere where the subscript j is used in the text, 
j = 1, 2. Both phases are assumed to be viscous, incompressible Newtonian liquids• The interaction 
with ambient air is neglected. The flow is considered to be two-dimensional and axisymmetric. A 
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Figure. 1. Flow configuration of  the compound jet and coordinate system. The flow is considered as a 
superposition of  plug flow and travelling waves of  small amplitude in the streamwise direction. (~  primary 

jet; ($) secondary-fluid layer. 

cylindrical coordinate system (r, z) is initiated such that the z-axis coincides with the axis of the 
jet. 

We impose upon this initi~ly steady motion arbitrary, small, two-dimensional disturbances 
~j(r, z, t), tTj(r, z, t), p:(r, z, t), hi(z, t), i.e. 

u j = U + ~ ; ,  vj=~.,  h j = R j + ~ ,  p:=Pj+ff,, 

where t is time variable, u: and vj are the velocities in the z- and r-directions, respectively, h: are 
the jet radii, pj are the pressures and Pj are the corresponding undisturbed values. 

Neglecting all terms of second order in the disturbance quantities, we obtain the linearized 
equations of motion and continuity: 

~ j  0~:= _ l v k +  ~jv%; [l] 
a T + u g  7 pj 

and 

v.~j = 0, ~j = (g, ~); [21 

where & and p: are viscosity and density, respectively. 
At the jet axis of symmetry we have 

tT~=O, ~7-r =0 ,  r = O .  [3] 

The boundary conditions to be applied at the surface hi, which can be taken as r ~ R: to first 
order in hi, require that there be no net flux of mass across the surfaces and that the velocity as 
well as the shear and normal stresses be continuous. These boundary conditions give, respectively: 

+ v°¢, 
v: = t3t & r = R  j ,  

r = R  I , 

r : R j ,  

[41 
~ + ~ j :  =o, 

2# I 

~z u R: \ 

where [.]i +' denotes the jump of the quantity in brackets, crossing the interface r = Rj in the 
r-direction, i.e. [.]i=' = (.):+ ,-(.)j at r = R:. When the interaction with the ambient medium is 
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neglected (.)3 is always zero. The last boundary conditions of [4] express the effect of the surface 
tensions aj. 

A stream function ffj is defined such that 

u l a  (r~j), t~ t3~j "J = ;  a r  = - [51 

If we assume the disturbances to be symmetric about the jet axis, then ~ , / ~  and/~j may be written 
as Fourier series involving terms of the form 

~j=(kj(r)exp~, /~=hjexp¢ ,  ~j=pj(r)exp~, ~ = i ~ ( z - ' 3 t ) ,  [6] 

where ~,j, hj and pj are the corresponding Fourier amplitudes. This representation [6] of the 
disturbances is the so-called travelling wave of phase velocity F and wavenumber ~. 

Introducing non-dimensional variables by using RI and U as a characteristic scale, one easily 
finds that in terms of the dimensionless variable Sj = ~j/Rl U, [1] and boundary conditions [3] and 
[4] give, respectively: 

is Rel(1 - c ) ( L  - a2)q~j = #JP, ( L  - o~2)2dpj; 
Pjl-t l  

[71 

Lc~j-d2c~j . l dd?j l (~ )" 
= & -~ r dr -~ dpj = (rdpj)' ; [8] 

4~i = ¢i' = 0, r = 0 ,  

[# (L+~2)q~] i+ l=0 ,  r=r j ,  

dpl=dp 2, c~=dp~, r = r l ,  

(ia#lRel)_l p (rLdp),_r(rqb),_2ct2c~, 1 - c  (rdp)' =SjHj,  r=r j ,  
Pl 

~bj aj 1 - c~2r? J .  

l - I j - -  1 - - C '  S J - - ~  1 Weir} ' 

[91 

where rj=Rj/RI,  I-Ij=hflRl, ~=~tR1 and c=-~/U are new dimensionless variables: 
Rel = Pl RI U/#I and Wel = Pl RI U:/al are the Reynolds and Weber numbers, respectively. 

Problem [7]-[9] is an eigenvalue problem for the Orr-Sommerfeld equations [7] about the 
complex phase velocity c when the wavenumber a is given a real value. When J~a c > 0, the 
disturbance of wavelength 2 = 2n/ct grows in time with exponential rate q = Jm(ac),  i.e. the 
so-called temporal instability. 

If the primary jet and secondary-fluid layer have the same physical properties the boundary 
conditions at r = rl can be neglected and [7]-[9] reduce to the classical Weber solution for a single 
viscous jet. 

In the general case, the required eigenvalue relation can also be obtained analytically from the 
governing equations [7]-[9] in terms of Bessel functions but the relation is too complicated and 
practically unworkable in the analysis. In the next section a numerical method for solving the 
eigenvalue problem [7]-[9] is proposed. 

3. METHOD OF SOLUTION 

If new variables vj = (v) 1), v) 2),. v j-o), v)4)) T are introduced such that 

o ) _  } vJ'  1 
(I) ( 2 ) = ( L _ ~ 2 ) ~ j ,  v j  - r IJj = ~)j~ 1)j = -- 
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then p rob lem [7]-[9] is t r ans formed into a system o f  first-order linear differential equations:  

v ;=  M,.vj ,  M~= 

1 

r 

0 
r 

~2 1 

o % 

0 1 0 

1 
0 1 

0 1 

0 0 

, m j =  ~2 + is Rel PJ/~2 (1 - -  c )  

with homogeneous  bounda ry  condit ions 

[10] 

[{ ( )}]i +' ( i~p~Re , ) - '  /~ v ~4)-2~ 2 v ° ) -  v ~) - - - -  

v~) = v~2> = O, r = O  

v~ ' ) = v [  '), v~ 3 ) = v ?  ), r = r ,  

[#(v ¢2) + 2~2v~1))]i+1 = 0, r = rj 

1 - ~ [ p : q i +  , s~ 
Pl -- 1 - - c  v~')' r : rj. 

[11] 

To solve the eigenvalue p rob lem [10, 11] we use an initial-value technique for  boundary-va lue  
problems.  The  concept ion of  the me thod  is given by Tayfer  (1973) and A b r a m o v  et al. (1977). 

Let  us assume that  vj ( j  = 1, 2) is the subset o f  solutions o f  [10] which only satisfies the boundary  
condit ions at r = 0 and r = r2, respectively. The  equat ions  o f  this subset can be writ ten as 

and 

v]') = at(r)v~3) + a2(r)v]4)~ r ~ [0, r,] [12 1 
v] 2) = a3(r)v~3) + a,(r)v~4)J 

v[ ') = b, (r )v~ 2) + b2(r )v[4)~ 
v?  ) bs(r)v[2) + b4(r)v(24) j r e[ r l , r2 ]  , [13] 

where ak(r) and bk(r)  (k = l, 2, 3 ,4)  are new unknown  functions satisfying certain (see [15] and 
[17] below) initial condit ions at r = 0 and r = r2 correspondingly,  so that  vj (] = l, 2) satisfy the 
bounda ry  condit ions at r = 0 and r = r 2, respectively. 

After  differentiation o f  bo th  sides of  [1 2] and [1 3], using [10], we find that  the unknown functions 
ak and bk are governed by initial-value p rob lems  as follows: 

p 
a l = l - - - - - -  al c¢2a~ -- a3(al + m, a2) 

r 

, a 2  
a2 = ~2a~ a2 - -  a 4 ( a l  + m 1 a2) 

r 

, a 3  
a 3 - 

r 

a 4  
a 4 =  1 - - - -  - 

r 

with initial condit ions at  r = 0, 

~2at a3 -- a3(a3 --1- ml a4) 

o~2a2a3 -- a4(a 3 -+- mla4) 

r e l0 ,  1], [14] 

aj = a 2 = a 3 = a 4 = O ;  [15] 
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and 
b~= -m2b2+b3 

b~= -bt---b2 +b4 
F 

b; = 1 + ~2b, + b3 --  m 2 b  4 
r 

b~=~2b2-b3 

with initial conditions at r = r2, 

1 
b, = 2 0 t 2 ,  

~-r e Jr,, r2], [161 

b2=blb3 - i ~  Rel/~o(~--c) , 

I }_l 
b3= 2e 2 + i e R e , p ° ( 1 - c )  , 

#o 

[171 

where 

b4=0,  

/~2 P2 
/.to = - ,  p0 = - .  

/~l P, 

Finally, if vJ k) are forced to satisfy the boundary conditions at r = r,, we have in terms of  
- (3) l = t / ) l  , V~ 4), /2~2), /314))T: 

where 

K . w = O ,  r = r l ,  K =  

at a2 - b l  - b 2  
1 0 -b3  - b 4  

a3 a4 (k 3 b , -# o )  k3b2 
- k ,  1 (k4b,+k2b3) (kab2+kzb4-go) 

k j -  (a2+mj) ,  ( j = l , 2 ) ,  

[181 

k 3 = 2~t:(1 - /z0)  , 

k , = 2 ~ 2 ( 1 - g 0 ) - i ~  Re, 1 St . 
r I - - C  

To provide a non-trivial solution of the original problem [7]-[9], the determinant of  K must be 
zero---which gives the required eigenvalue relation. In order to obtain ak and bk at r = r,, the 
Runge-Kut ta  method is applied to integrate [14] and [15] and [16] and [17]. In actual computations, 
of  course, an iterative procedure about c is performed until the determinant of K vanishes with 
some prescribed degree of  accuracy. 

It is worth noting that the boundary conditions at r = r2 admit to form the functional relations 
between v[ k) (k = 1, 2, 3, 4) in a different way. However, [13] are chosen in such a way that the 
initial-value problem [16, 17] derived, can be solved with fewer computational difficulties. 

4. N U M E R I C A L  RESULTS AND DISCUSSION 

(a) Growth rate of  the disturbances 

The growth rate of  the disturbance q = J~n(~c) depends on a large parameter s set: Re,, We,, 
r2 = R2/RI, tro= a 2 / ~  , , Po  = P2/P~, #o = ].~2/~, and ct. 
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Figure 2. Growth rate q as a function of the wavenumber ct in a comparison between compound jets and 
the corresponding single jets. - - ,  Compound jets with Re I = 500, P0 = ~ = 1 and r: = 2: l--We~ = 50, 
tr 0 = 0; 2, 2~--Wel = 500, tr 0 = 10; 3, 3~--We~ = 50, a 0 = 1. ----, Single jets with Re I = 500 and We I = 50: 

l~--r = r~ ; 2~--r = r 2. 

Figure 2 shows the growth rate q as a function o f  the wavenumber  a. Typical examples o f  q - ct 
curves, for the case o f  a c o m p o u n d  jet with a0 = P0 =/ to  = 1 and r2 = 2, are curves 3 and 3 a. Here 
Rel = 500 and Wet = 50 are calculated for a pr imary jet o f  water: Pt = 997 kg/m 3, /~j = 0.91 cP, 
cr~ = 25 dyn/cm, R~ = 166/~m and U = 2.75 m/s. In contrast  to the single jet case, two families o f  
unstable disturbances (curves 3 and 3 a) are found in the long-wave area ct < l/r2. In the short-wave 
region, l/r2 < ~ < 1, only curve 3 represents unstable disturbances. Both families pass through a 
maximum. There is no  positive q if a > 1, and disturbances with such short  wavelengths die away. 

The existence o f  two families o f  unstable disturbances in the long-wave area is due to the 
existence o f  two surface tensions: the inner one at the interface between the phases; and the outer  
one at the surface o f  the c o m p o u n d  jet. In support  o f  this conclusion are the cases 1/tr o = 0 and 
a0 = 0, i.e. tr 1 = 0 and a2 = 0, respectively. I f  1/ao = 0, the c o m p o u n d  jet is reduced to a single jet 
o f  radius r = r 2 (curve 2s). Increasing the inner surface tension from zero, the second family o f  
unstable disturbances appears in the long-wave region (see curve 2a), while the corresponding first 
family (curve 2) expands its unstable region f rom ct < 1/r2 up to ~t < 1. In the other  extreme case, 
a0 = 0, one family o f  unstable disturbances exists also (curve 1). Here the secondary-fluid cover 
affects the growth rate q via inertial and viscous forces only, which explains the difference between 
curves 1 and lS. The latter corresponds to a single jet o f  the c o m p o u n d  jet core. 

To summarize,  in the case o f  c o m p o u n d  jets with 0 < a0 < ~ the first family o f  unstable 
disturbances is above the corresponding second family in the entire region, 0 < ct < 1. Hence, the 
second family is irrelevant with regard to linear instabi l i ty-- therefore in the subsequent discussion 
and figures the second family o f  unstable disturbances will not  be considered. 

To study the influence o f  the secondary-fluid cover on the c o m p o u n d  jet capillary instability we 
examine the pr imary jet with R ~ = 1 6 6 # m ,  U = 2 . 7 5 m / s ,  p ~ = 9 9 7 k g / m  3, # , = 0 . 9 1 c P ,  
tr~ = 25 dyn/cm and analyse the effect o f  the parameters  tr 2, P2, #2 and R: ,  one by one, on the growth 
rate as a function o f  the wavenumber .  In terms o f  the non-dimensional  parameters  this means that 
only one o f  a0, P0, ~ and r2 is varied whilst keeping the rest o f  the non-dimensional  parameters,  
including Re1 and We1, constant .  According to the assumption that the jet is destroyed by the most  
rapidly growing disturbance, the c o m p o u n d  jet can become more  or  less stable depending on the 
maximum growth rate factor  q .  = max~ q. Some o f  the examples included in the analysis are hard 
to study experimentally because o f  the large differences between the parameters o f  both phases, 
but  they are shown in the figures to underline the tendencies observed in the phenomena.  

(b ) Effect of  the outer surface tension 
It  is well-known that  the most  impor tant  factor  for capillary instability is the surface tension, 

hence the existence o f  the co-axial cover is expected to affect the c o m p o u n d  jet instability mainly 
via the outer  surface tension. 
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Figure 3. Effect of the outer surface tension on the growth rate q as a function of the wavenumber 
(Re I = 500, We I = 50, r 2 = 2, P0 =/to = 1): 1--tr 0 = 0.5; 2--a 0 = crop = 2.267; 3--a 0 = 5; 4-----6 o = 10. The 

compound jet is the most stable among the jets with equal Re~, We~, P0, ~ and r2, if cr 0 = ~rop. 

In figure 3 q -~  curves are presented for the case o f  P0 = #0 = 1 and different values o f  a0. The 
outer  surface tension influences the unstable disturbances in different ways depending on the 
wavenumber .  In the long-wave area, ~ < 1/r2, the growth  rate q increases with increasing a0, while 
a 0 has a weak opposite effect on  q in the short-wave region, 1/r 2 < ~ < 1. As is to be expected, the 
outer  surface tension does not  influence disturbances with wavelengths equal to the circumference 
o f  the c o m p o u n d  jet and all q - a  curves intercept at one and the same point,  at ~ = l/r2. 

Increasing a0 f rom zero, the max imum growth rate factor  q .  decreases and is shifted in the 
long-wave direction. It is wor th  comput ing  the min imum value qop o f  q .  as a function o f  a0. This 
case will cor respond to that  o f  the mos t  stable jet a m o n g  the c o m p o u n d  jets with equal Re~, We~, 
P0, #0 and r 2. In  the example in figure 3 the min imum qop = 0.0335 is reached at a 0 = Crop = 2.267 
and ~op = 1/r 2 (curve 2). No te  that  the growth  rate o f  the disturbances a round  ~op in curve 2 is 
slightly below the max imum value qoo and this max imum is not  clearly expressed in the figure. I f  
Cr0 > Crop, the q--a curves exhibit two local maxima and q . ,  which now belongs to the long-wave 
area, ~ < l/r2, increases with increasing Cr0 (see curves 3 and 4). The same effect was predicted by 
Sanz & Meseguer (1985), Radev & Shkadov  (1985) and Shutov (1985) for the one-dimensional  
equat ion o f  mot ion  for inviscid jets. 

To summarize the results f rom figures 2 and 3 and the variety o f  numerical experiments not  
shown in the figures, the capillary instability o f  c o m p o u n d  jets under  short-wave disturbances, 
1/r2 < ~ < 1, is governed mainly by the inner surface tension; while in the long-wave region, 

< l/r2, the influence o f  the outer  surface tension dominates.  

(c) Effect of  the secondary-fluid density and viscosity 

Figures 4 and 5 show the effect o f  the secondary-fluid density and viscosity on the growth rate 
factor,  respectively. The pr imary jet is assumed to be the same as in figure 3 and cr0 is taken as 
equal to 1. The influence o f  P0 and ~ is spread over the entire range o f  0 < 0t < 1 and has a 
unidirectional effect: the c o m p o u n d  jet is more  stable with increased value o f  the secondary-fluid 
density or  viscosity. The qualitative difference between the influence o f  P0 and #o lies in the 
following. Fo r  large P0 the q-ct curves exhibit only one local max imum which belongs to the 
short-wave area, l/r2 < ~t < 1 (figure 4, curves 1 and 2). U p o n  decreasing P0, the second local 
max imum appears in the region ~t < 1/r2 (in figure 4 it occurs when P0 < 0.1767) but  it is still less 
than the max imum in the short-wave area (figure 4, curve 3). I f  the density ratio reaches a critical 
value, bo th  maxima become equal (figure 4, curve 4). Beyond this critical value the max imum 
growth rate factor  q .  belongs to ct < 1/rz (figure 4, curve 5), as it does in the case o f  cro > aop (see 
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Figure 4. Effect of  the secondary-fluid density on the growth rate q as a function of  the wavenumber 
( R e l = 5 0 0 ,  W e t = 5 0 ,  r 2 = 2 ,  a 0 = P . 0 = l ) :  l - - p 0 = 2 ;  2 - -p0=0 .5 ;  3 - -p0=0 .16 ;  4 - -p0=0 .1385 ;  
5--p0 = 0.1. The compound  jet is more stable with increased secondary-fluid density. If  P0 = 0.1385 both 

maxima in the q -c~ curve are equal. 

figure 3). Similar effects are not observed upon decreasing/ao (see figure 5), which shows that the 
influence of/z0 on the capillary instability is weaker than that of P0. 

(d) Effect of the thickness of the secondary-fluid layer 
In figure 6 the effect of the thickness of  the secondary-fluid layer is illustrated for the case of 

a0 = P0 = #0 = 1. 
When r2 >~ 5 the outer surface tension has no effect and the q-~ curves are indistinguishable from 

one another (curve 4). The results are the same as in the case of a single jet of  the core interacting 
with the unbounded medium of  a secondary fluid if both phases stream with uniform undisturbed 
velocity. Upon decreasing the thickness of  the secondary-fluid layer (curves 3, 2 and 1), the outer 
surface tension comes into effect and the compound jet becomes less stable. In the case of a thin 
layer, r: ,,~ 1 (e.g. curve 1), the effects of both surface tensions sum up, i.e. the growth rate q 
approaches the results for a corresponding single jet with surface tension equal to the sum of  the 
inner and outer ones (curve IS). 

(e) Regimes of break-up and break-up length 
The compound jet configuration is destroyed due to propagation of the most rapidly growing 

0.050 
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0.0 Q25 Q5 0.75 1.0 
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Figure 5. Effect of  the secondary-fluid viscosity on the growth rate q as a function of  the wavenumber 
(Re I =500,  We t =50 ,  r 2 = 2 ,  a0=P0  = I): 1--p.o = 50; 2 - - / to=  20; 3--p.o = 10; 4--p.0 = 0.1. The com- 

pound jet is more stable with increased secondary-fluid viscosity. 
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Figure 6. Effect of the thickness of the secondary-fluid layer on the growth rate q as a function of the 
wavenumber ~c - - ,  Compound jets with Re I =500, We t = 50 and t r 0 = P 0 = # 0 =  1: l - - r 2 =  1.1; 
2 - - r  2 = 1.25; 3- - r  2 = 1.67; 4 - - r  2/> 5. ----, Single jet with Re I = 500, We t = 100 and radius r = r I . The 
compound jet is more stable with increased thickness of the secondary-fluid layer. In the case of a very 

thin layer, the effects of both surface tensions sum up. 

disturbance with a growth rate q ,  at the point where the primary jet or its cover is no longer a 
coherent portion. The distance to this first break-up point is determined by the following: 

L =  min{L~, L2} , L1 = 1 l n ( ~ ) ,  L 2 =  l ln(R2-R') q----~ q-~ ~ , [19] 

where bj=l/-/jlRj is the initial disturbance amplitude at the surface r =Rj  and Ll and L2 
(normalized against R l) are the break-up lengths of  the core and its cover, respectively. Note that 
neither 51 or b2 can be chosen arbitrarily. To determine b! as a function of  62, the eigenfunction 
v[ ~) has to be computed at r = q ,  using [10] and the backward procedure in [13], when v<2 ~) is given 
an initial value at r = r2. 

It should be noted that the present theory is valid up to the distance L as long as the compound 
jet configuration still exists. 

L= LI= L 2 

7 

primary jet [ 1 secondary-fluid tayer 

Figures 7a-c. Capillary break-up regimes of compound jets. (a) Drop formation within the outer fluid. 
The core breaks up first while its layer still exists as a coherent portion. (b) Break-up by meeting of 
interfaces. The cover cuts off before the core. (c) Break-up as a single jet. Both phases break up 

simultaneously at one and the same point. 
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Figure 8. Break-up length L as a function of  the surface 
tension ratio tro[Re t =87.12,  We~ =9.05,  r 2=  2.03, 
ln(R2/t~2) = 13.4]: l - -p0  = 1, /t o = 1; 2--p0 = 1, #0 = 0.5; 
3 - - p 0 =  1, p.o = 0.1; 4 - -p0  = 0.5, #0 = 1; 5---p0 = 0.1,/-to = 1. 
All break-up regimes prove to be feasible: - - ,  Drop  
format ion within the outer  fluid (L = L~ ); . . . .  , break-up by 
meeting of  interfaces (L = L2); O ,  breakup as a single jet 

(L = L t = L2). 

Figure 9. The corresponding initial disturbance level 
ln(R~/& 0 at the interfacial surface as a function of  the 
surface tension ratio tr 0. The horizontal  axial line 

ln(Ri/fit) = In(R2/62) separates the break-up regimes. 

In figures 7a-c three possible regimes of  a compound jet break-up are shown. In figure 7a the 
primary jet breaks earlier than its cover (drop formation within the outer fluid, L = L t ). In figure 
7b the cover cuts off while the primary jet still exists as a coherent portion (break-up by meeting 
of  interfaces, L = L2). In the extreme case, figure 7c, the primary jet and its cover break up 
simultaneously at one and the same point (break-up as in the single jet case, L = L~ = L2). 

The numerical experiments are performed on the basis of  the compound jet shown in figure 6 
from Hertz & Hermanrud (1983). For  the primary jet of  80% H20  + 20% glycerol (Rl = 66.5/~m, 
R 2 = 135/~m, U = 2.6 m/s, p] = 1047 kg/m 3, /~ = 2.078 cP, tr] = 52 dyn/cm) we have Re~ = 87.12, 
We~ = 9.05 and r2 = 2.03. The break-up length L is plotted in figure 8 as a function of the surface 
tension ratio tr 0 for the case of  differing viscosity and density of  the outer fluid. A constant value 
of 13.4 is assumed for ln(R2/62), a value quoted by Grant  & Middleman (1966) for single jets. It 
is seen from the figure that all regimes of  break-up prove to be feasible in the numerical 
experiments. The continuous curves correspond to the case in figure 7a, whereas the dashed curves 
represent the regime in figure 7b. At points A and B, where tr 0 takes the critical values acr = 0.8050 
and 3.075 respectively, the compound jets break up as single jets (see figure 7c) regardless of  the 
differing densities of the two phases. 

The corresponding initial disturbance level ln(R~/5~ ) at the interface r = r] is shown in figure 9. 
The occurrence of  any break-up regime can be predicted by comparing the ratios R~/5] and R2/62. 
All examples below the horizontal axial line ln(R~/f] ) =  13.4 in figure 9 correspond to figure 7a 

Above this line the break-up regime shown in figure 7b is manifested 

At points A and B, where the horizontal axial line intercepts curves 4 and 5, break-up as a single 
jet occurs 
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Figures 8 and 9 and all numerical experiments (not shown here), performed for a large variety 
of the parameters, are in support of the following conclusions: 

(i) If the compound jet is formed from a primary jet of density less than or equal 
to the density of the secondary-fluid cover (P0 I> 1), then only drop formation 
within the outer fluid occurs, regardless of the differing viscosities and surface 
tensions of the two phases. 

(ii) If  the density of the primary jet is greater than the density of the secondary-fluid 
cover (P0 < 1), all break-up regimes are possible. Assuming constant values of 
Re,, We~, r2 and/~0, the analysis gives: 
--break-up as a single jet if a0 is equal to a certain critical value trcr; 
- -d rop  formation within the outer fluid if a0 < aor; 
--break-up by meeting of  interfaces if tr 0 > trcr. 
The critical value tr~r is dependent on a combination of all jet parameters so it 
has not yet been possible to determine the correlation between jet parameters and 

O'cr. 

(iii) The break-up length L reaches a maximum value at a0 = trop, assuming constant 
values for Re~, We,, r 2, Po, P.o and ln(R,/6~). 

More often than not, the first break-up regime--drop formation within the outer fluid--occurs. 
This can be explained in the following way. The primary jet is bounded by a capillary surface with 
a curvature greater than the curvature of the compound jet itself, so more often it is the core that 
breaks up first. To manifest the second regime--break-up by meeting of interfaces--it is necessary 
that the outer surface tension be sufficiently great, but this alone is not enough. The compound 
jet can not undergo the second break-up regime even if the outer surface tension increases to 
infinity. In this case the behaviour of the compound jet approaches that of break-up as a single 
jet, but the compound jet break-up is still in the first regime, because the destabilizing effect of the 
outer surface tension influences the jet core as well. The outer surface tension can come into effect 
across the secondary-fluid cover faster, and cause its cut-off before the core breaks up into drops, 
only if the density of the cover is less than the density of the core. 

5. EXPERIMENTS VERSUS THEORY 

Due to the scarcity of experimental data in the literature the comparison is made only for the 
low-viscous jets studied by Hertz & Hermanrud (1983). Two different compound jets were 
considered. In the first example (figure 5 of Hertz & Hermanrud) the compound jet consists of one 
and the same mixture 80% H20 + 20% glycerol but the primary jet is dyed. From the data quoted 
by Hertz & Hermanrud (R~=66.5#m,  R2=135/~m, U = 2 . 6 m / s ,  p ,=/~2=2.078cP,  
p, = p 2  = 1047kg/m 3, tr~ =0 ,  tr2=72dyn/cm),  we have Re~ =87.12, Wel/tr0=6.537, l/tr0=0, 
r2 = 2.03 and P0 = ~ = 1. As expected, the compound jet behaves as a single homogeneous jet and 
the theory gives L = L, = L2. On the basis of the compound jet length L = 331 (22 mm measured 
by Hertz & Hermanrud) the back-calculated value of the initial disturbance level is 
In(R2~62) = 14.74. The value of the wavenumber ~ .  = 0.3361, corresponding to the most rapidly 
growing disturbance, is in good agreement with the value at. = 0.3379, corresponding to the last 
half-wavelength of 0.62 mm measured in figure 5c of Hertz & Hermanrud (1983). Sanz & Meseguer 
(1985) report a value of 0.3458 in the case of an inviscid analysis of the same example. 

Whereas the example above shows the validity of the analysis for single homogeneous jets only, 
the example in figure 6 of Hertz & Hermanrud is more interesting for the purpose of comparison. 
The primary jet is of the same mixture, while the secondary fluid is a dimethyl silicone oil which 
creates a difference only in trj = 52 dyn/cm and tr 2 = 20 dyn/cm. Hence Re~ = 87.12, We~ = 9.051, 
r2 = 2.03, a 0 = 0.3846 and P0 = ~ = 1. Here, both experimentally and numerically, we have drop 
formation within the outer liquid. Hertz & Hermanrud make no comment about the break-up 
length L and our comparison concerns the wavenumber ~t. only. The numerical result is 
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~, = 0.6816, whereas the value corresponding to the last 0.6 mm wave in figure 6a of Hertz & 
Hermanrud (1983) is ~t, = 0.6964. The analysis of Sanz & Meseguer (1985) predicts ~,  = 0.6793. 

Hertz & Hermanrud (1983) used liquids of approximately equal densities and the second regime, 
break-up by meeting of interfaces, was not feasible in their experiments. 

6. CONCLUSION 

The temporal capillary instability of axisymmetrical compound jets was studied via axisym- 
metrical travelling waves with amplitudes small enough to use linear analysis. 

If the undisturbed velocity profile is assumed homogeneous and uniform, the phase velocity of 
the disturbances can be obtained analytically, but the solution is in a rather complicated form in 
terms of Bessel functions and is difficult to use in the analysis. 

In the present paper a numerical solution of the boundary-value problems for the 
Orr-Sommerfeld equations was proposed. The initial-value technique applied allowed high 
accuracy of the order 10-5-10 -6 in the computations and was applicable to the entire range of 
Reynolds numbers--which includes all laminar compound jets of liquids with differing density, 
viscosity and surface tension values. It could also be applied in the case of a non-uniform 
undisturbed velocity profile, studied by Radev & Gospodinov (1986), which makes it possible to 
include the effect of velocity-profile relaxation in future numerical analyses. 

Since the compound jet has a large number of parameters, it is difficult to investigate all their 
possible combinations. It was shown that the capillary instability of the compound jets is governed 
mainly by the surface tensions on the two surfaces. Two families of disturbances with growing 
amplitudes were found but the jet instability is controlled only by the family possessing the larger 
growth rate of disturbances. The next important parameter was the density ratio, the viscosity ratio 
has a comparatively weak influence on compound jet instability. 

According to the way in which the initial compound jet configuration is destroyed, three different 
regimes of break-up were predicted numerically. The linear analysis gives only the distance L to 
the first break-up point, as was shown in figures 7a-c. In the general case, the determination of 
the final point of drop formation, where the compound jet itself breaks up, requires further study 
of the phenomena. 

The numerical results concerning the wavenumber of the most rapidly growing disturbance are 
in good agreement with the experimental data of Hertz & Hermanrud (1983). As regards the 
comparison of the break-up length L, there is no experimental data available except for 
homogeneous compound jets. 

In the literature there is no mention of experimental evidence of the second break-up regime: 
capillary break-up by meeting of interfaces. It was predicted numerically when both phases 
exhibited comparatively large differences in density or surface tension. Actually, if such compound 
jets are examined experimentally, it might be possible for the sinuous or varicose instability to grow 
faster than the capillary one. This could be an interesting point for future study, both experi- 
mentally and theoretically. 
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